Overview of genome wide arrays in Haematological Malignancies

"Array-based or molecular karyotyping"
Principle of array-based karyotyping tools (1)

BAC clones Human genome

(SNP) oligo clones

Array platforms
250k SNP (Affymetrix)
CytoscanHD SNP (Affymetrix)
720K BAC Array (NimbleGen)
...
Principle of array-based karyotyping tools (2) workflow

Differential labeling Co-hybridization scanning Bioinformatic processing
Bioinformatic resolution of copy number imbalances

Arrays can detect only unbalanced DNA changes (ie chromosomal losses or gains) but are enable to detect balanced chromosomal translocation
Array-based karyotyping can be done with two main different platforms

- Array comparative genomic hybridization (« array CGH »)
 - copy number changes only

- Single-nucleotide polymorphism microarrays (« SNP array »)
 - copy number changes AND copy-neutral alterations (or acquired uniparental disomy - aUPD)
Single nucleotide polymorphism (SNP)

- SNP: single nucleotide variations between paired maternal and paternal chromosomes

 heterozygosity

- In SNP-arrays, oligo probes are specific to each allelic variants of selected SNP within a given locus

- Hybridization of genomic DNA to both probes variants indicates heterozygosity while a signal for only one allele is consistent with loss of heterozygosity (or homo/hemizygosity)
Deletion with LOH vs Copy neutral LOH (aUPD)

aUPD (or copy neutral LOH) refers to a chromosomal region in which both copies of that region are acquired from the same parent, resulting in a copy number of two but with LOH (thus **copy neutral LOH**).
Copy neutral LOH or « acquired uniparental disomy (aUPD) in cancers

- constitute 20-80% of the LOH seen in both solid and liquid cancers [and generate homozygosity for mutated (inactivated) tumor supressor genes or (activated) oncogenes involved in transformation]

- CNLOH in MDS
 - TET2, EZH2, ...
 Epigenetic deregulation

 - normal karyotype and aUPD 7q

Langemeijer et al, Nat Genetics, 2009

Tiu et al Blood 117, 2011
Advantages

• High-resolution, genome-wide copy number assessment in **one** assay
 sensitive whole global scanning of genomic imbalances
 identification of very small copy-number aberrations (CNA)

• Does not require cell culture
 performed on interphase cells (and archival samples)

• Simultaneous detections of CNA (« copy loss LOH ») and aUPD (« copy neutral LOH ») if using
 a SNP-based array.
Limitations

- Inability to detect balanced translocations

- Inability to assess regions of the genome not represented on the arrays

- Decreased performance at low level of tumoral cells (tumoral sub-clones undetectable by array-based genomic profiling when level < 20%)

 "contamination" with normal cells can be problematic
Clinical applications of array-based karyotyping

Can arrays-based karyotyping serve as an alternative for conventional karyotyping and FISH in CNA detection?

Few studies on applications of whole genome arrays in diagnostics
Clinical applications of array-based karyotyping

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Genetic aberrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>CNA, translocations</td>
</tr>
<tr>
<td>AML</td>
<td>translocations, gene mutations, CNA</td>
</tr>
<tr>
<td>MDS</td>
<td>CNA, gene mutations, translocations</td>
</tr>
<tr>
<td>MPN</td>
<td>gene mutations, CNA, translocations</td>
</tr>
<tr>
<td>MM</td>
<td>CNA, translocations</td>
</tr>
<tr>
<td>CLL</td>
<td>CNA, gene mutations, translocations</td>
</tr>
</tbody>
</table>

CNA = copy number alterations
Array in CLL

Genomic aberrations with prognostic relevance

<table>
<thead>
<tr>
<th>Caryotype</th>
<th>% of cases, range</th>
<th>Prognosis</th>
<th>Known and/or putative involved genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13q14.3 loss</td>
<td>14-40</td>
<td>Good</td>
<td>mir-16-1; mir 15a</td>
</tr>
<tr>
<td>trisomy 12</td>
<td>11-30</td>
<td>Intermediate</td>
<td>? CLLU1</td>
</tr>
<tr>
<td>del(11q22-23)</td>
<td>10-32</td>
<td>poor</td>
<td>ATM</td>
</tr>
<tr>
<td>del(17p13.1)</td>
<td>3-27</td>
<td>poor</td>
<td>TP53</td>
</tr>
<tr>
<td>Translocation chromosomique</td>
<td>20-42</td>
<td>poor</td>
<td>IGH</td>
</tr>
<tr>
<td>Complex karyotype</td>
<td></td>
<td>poor</td>
<td></td>
</tr>
<tr>
<td>del(6q)</td>
<td>2-9</td>
<td>Intermediate</td>
<td>?</td>
</tr>
</tbody>
</table>

adapted from Dal-Bo et al *J Trans Med* 2009

Karyotype: low success rate (low mitotic index of the CLL cells)
Comparison on FISH and array: **very good concordance**

- **Hagenkord et al., JMD 2010:**
 134 CLL patients
 250K SNP-array (Affymetrix)
 98.5% concordance array and interphase FISH

- **O’Malley et al., Int Jnl Lab Hem 2011:**
 55 CLL patients
 BAC array (Hemescan)
 93% concordance array and interphase FISH

- **Unpublished studies in the Nederlands** [AMC Amsterdam & UMC St Radboud: Nijmegen] (data kindly provided by M. Stevens-Kroef Nijmegen)
 47 CLL patients compared array with FISH or MLPA
 Agilent 180K oligo array or Affymetrix CytoScan HD array
 98% concordance array/FISH and 100% concordance array/MLPA
(illustrations kindly provided by M. Stevens-Kroef, Radboud University Nijmegen)
Array identifies additional CNA and CNLOH (1)

• Length Heterogeneity within the 13q14 deletions
 two distinct subtypes: - type I and type II deletions (< 2 Mb and not including the \textit{RB1} locus) vs > 2Mb and including the \textit{RB1} locus) biological and prognostic distinct entities
 (Ouillette et al, Clin Cancer research 2011)

• « Atypical deletions»:
 11q22.3 deletions which do not involve the \textit{ATM} gene

• Genomic complexity: additional abnormalities detected
 21% of CLL cases have significant genome-wide aberrations at multiple loci not assessed by the standard FISH panels
SNP-Array identifies additional CNA and CNLOH

- CLL cases demonstrating UPD at regions with clinical relevances

 acquired UPD at chromosomal region 17p13.1 involves the *TP53* locus and represents two inactivated mutated copies of *TP53* that current testing methods (karyotype and FISH) would not detect!
Conclusion: array on CLL samples

- Array can replace FISH or MLPA for CNA detection
- Can be implemented in a routine clinical diagnostic setting
- Provides additional genetic informations
 (but clinical relevances of « new » genetic alterations need to be determined)
ARAYS in ALL

- Hyper/hypodiploïdy, CNA, translocations
- Karyotype: low success rate (failures or normal)
- Yield and quality of chromosomes often poor
- Small recurrent CNA not detectable by karyotyping
Comparative study: conventional karyotyping vs microarray-based genomic profiling

• Cohort of 60 childhood ALL

1 - Array has higher CNA detection rate than conventional karyotyping

- 61% CNAs detected by karyotyping vs 93% by array
- among nl karyotype cases, 88% showed CNAs

<table>
<thead>
<tr>
<th>Karyotyping</th>
<th>array</th>
</tr>
</thead>
<tbody>
<tr>
<td>61% CNAs</td>
<td>93% CNAs</td>
</tr>
<tr>
<td>4% balanced translocation</td>
<td></td>
</tr>
<tr>
<td>35% no aberrations detected (failure or normal karyotype)</td>
<td>7% no CNAs detected (3 normal profiles and 1 failure)</td>
</tr>
</tbody>
</table>
2- Recurrent small CNAs in ALL detected by genomic array technologies

- B-cell development (*EBF1, PAX5, IKZF1*)
- Cell cycle regulation (*RB1, CDKN2A*)
- Epigenetic factors (*BTG1*)

- Some deletions have clear prognostic impact

IKZF1 (Ikaros) deletions predict poor outcome

(illustration kindly provided by M. Stevens-Kroef, Radboud University, Nijmegen)
Conclusion: array on ALL samples

• High success rate (93%) in detecting CNAs; superior to karyotyping (65%)

• Provides additional genetic informations (clinically relevant) (e.g. $IKZF1$ gene deletion)

• FISH tests remain necessary for clinically relevant balanced aberrations
Arrays in Multiple Myeloma

Genomic aberrations with prognostic relevance

<table>
<thead>
<tr>
<th>Genetic abnormality</th>
<th>Genes involved</th>
<th>Incidence</th>
<th>Clinical impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal karyotype (often complex)</td>
<td></td>
<td>30%</td>
<td>poor</td>
</tr>
<tr>
<td>t(4;14)(p16.3;q32)</td>
<td>IGH-FGFR3</td>
<td>10-15%</td>
<td>poor</td>
</tr>
<tr>
<td>t(14;16)(q32;q23)</td>
<td>IGH-MAF</td>
<td>~ 5%</td>
<td>poor</td>
</tr>
<tr>
<td>t(11;14)(q13;q32)</td>
<td>IGH-CCND1</td>
<td>~ 20%</td>
<td>intermediate</td>
</tr>
<tr>
<td>Hyperdiploidy (5,9,15)</td>
<td></td>
<td>45%</td>
<td>good</td>
</tr>
<tr>
<td>Loss 17p13</td>
<td>TP53</td>
<td>5-10%</td>
<td>poor</td>
</tr>
<tr>
<td>Loss 13q14</td>
<td>RB1</td>
<td>50%</td>
<td>good</td>
</tr>
<tr>
<td>1q21 gain</td>
<td>CKS1B</td>
<td>20%</td>
<td>poor</td>
</tr>
<tr>
<td>1p36 loss</td>
<td>?</td>
<td>20-30%</td>
<td>poor</td>
</tr>
</tbody>
</table>
Arrays in Multiple Myeloma

- Karyotype: low success rate (30-40% of cases)

- Cryptic genomic abnormalities [t(4;14), t(14;16)]

- Gold standard: interphase FISH on enriched plasma cells
Comparative study: interphase FISH vs microarray based genomic profiling

(Stevens-Kroef M et al. Genes Chrom & Cancer, 2012)

- on selected plasma cells from 13 patients
- **very good concordance** between FISH and arrays in the identification of CNAs

<table>
<thead>
<tr>
<th></th>
<th>FISH</th>
<th>ARRAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with aberrations</td>
<td>13/13</td>
<td>12/13</td>
</tr>
<tr>
<td>Additional</td>
<td>translocation</td>
<td>3 to 22 abnormalities per patient (including CNLOH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tetraploid vs hyperdiploid karyotype</td>
</tr>
<tr>
<td>Missed</td>
<td></td>
<td>mosaic del(17p) (13% of the cells)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clinical relevance?</td>
</tr>
</tbody>
</table>
Conclusion: array on MM samples

• 92% concordance array and interphase FISH

• Allows discrimination between tetraploid and hyperdiploid karyotype

• FISH tests remain necessary for clinically relevant balanced translocations

• Identification of many additional lesions with array (clinical relevance to be determined)
Take-home messages

- Array is becoming applicable in routine diagnostics for hematological neoplasms according to their specific profiles

 ALL: high success rate (93% vs 65%) and detection of clinically small deletions

 CLL and MM: can replace interphase FISH/MLPA

- Do not replace metaphase karyotyping: balanced abnormalities not detected

- High resolution but low sensitivity (threshold: ~ 20%)

- Identification of novel genomic abnormalities; clinical relevance has to be determined